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ABSTRACT
Data-driven applications rely on the correctness of their data
to function properly and effectively. Errors in data can be
incredibly costly and disruptive, leading to loss of revenue,
incorrect conclusions, and misguided policy decisions. While
data cleaning tools can purge datasets of many errors before
the data is used, applications and users interacting with the
data can introduce new errors. Subsequent valid updates can
obscure these errors and propagate them through the dataset
causing more discrepancies. Even when some of these discrep-
ancies are discovered, they are often corrected superficially,
on a case-by-case basis, further obscuring the true underlying
cause, and making detection of the remaining errors harder.

In this paper, we propose QFix, a framework that derives
explanations and repairs for discrepancies in relational data,
by analyzing the effect of queries that operated on the data
and identifying potential mistakes in those queries. QFix
is flexible, handling scenarios where only a subset of the
true discrepancies is known, and robust to different types of
update workloads. We make four important contributions:
(a) we formalize the problem of diagnosing the causes of data
errors based on the queries that operated on and introduced
errors to a dataset; (b) we develop exact methods for deriving
diagnoses and fixes for identified errors using state-of-the-art
tools; (c) we present several optimization techniques that
improve our basic approach without compromising accu-
racy, and (d) we leverage a tradeoff between accuracy and
performance to scale diagnosis to large datasets and query
logs, while achieving near-optimal results. We demonstrate
the effectiveness of QFix through extensive evaluation over
benchmark and synthetic data.

1. INTRODUCTION
In spite of the growing importance of big data, sensors, and

automated data collection, manual data entry continues to
be a primary source of high-value data across organizations
of all sizes, industries, and applications: sales representatives
manage lead and sales data through SaaS applications [77];
human resources, accounting, and finance departments man-
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age employee and corporate information through terminal or
internal browser-based applications [61]; driver data is up-
dated and managed by representatives throughout local DMV
departments [7, 16]; consumer banking and investment data
is managed through web or mobile-based applications [13,19].
In all of these examples, the database is updated by trans-
lating form-based human inputs into INSERT, DELETE
or UPDATE query parameters that run over the backend
database—in essence, these are instances of OLTP appli-
cations that translate human input into stored procedure
parameters. Unfortunately, numerous studies [9,53,57], re-
ports [44,73,81,91] and citizen journalists [50] have consis-
tently found evidence that human-generated data is both
error-prone, and can significantly corrupt downstream data
analyses [67]. Thus, even if systems assume that data import
pipelines are error-free, queries of human-driven applications
continue to be a significant source of data errors, and there
is a pressing need for solutions to diagnose and repair these
errors. Consider the following representative toy example
that we will use throughout this paper:

Example 1 (Tax bracket adjustment). Tax brack-
ets determine tax rates for different income levels and are
often adjusted. Accounting firms implement these changes to
their databases by appropriately updating the tax rates of their
customers. Figure 1 shows a simplified tax rate adjustment
scenario and highlights how a single error to the predicate in
update query q1 can introduce errors in the owed attribute,
and a benign query q3 can then propagate the error to affect
the pay attribute.

This type of data entry error can be found throughout
information management systems. In 2012, there were nearly
90,000 local governments in the United States, each respon-
sible for tracking taxation information such as the tax rate,
regulatory penalties, and the amount each citizen owes. Gov-
ernment employees manage this information using form-based
accounting systems [66] and are ultimately susceptible to
form entry error. A cursory search of the news finds nu-
merous reports of how data entry errors resulted in utility
companies overcharging cities by millions of dollars [23], a
state attorney prosecuting the wrong people [62], and the
Boston Police paying tens of millions of dollars for a new
records system to combat data entry errors that “riddled” the
previous system, which contained “highly scrutinized stop-
and-frisk information” [14]. In addition, numerous articles
describe how clerical errors by local governments [4] and the
CRA [49] affect citizen tax bills and returns calculations.

In real-world cases like these, data errors are typically
identified and reported by individuals to departments that
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Taxes: D0

ID income owed pay

t1 $9500 $950 $8550
t2 $90000 $22500 $67500
t3 $86000 $21500 $64500
t4 $86500 $21625 $64875

Query log : Q
q1: UPDATE Taxes SET owed=income*0.3

WHERE income>=85700

q2: INSERT INTO Taxes

VALUES (85800, 21450, 64350)

q3: UPDATE Taxes SET pay=income-owed

Taxes: D4

ID income owed pay

t1 $9500 $950 $8550
t2 $90000 $27000 $63000
t3 $86000 $25800 $60200
t4 $86500 $25950 $60550
t5 $85800 $21450 $64350

Figure 1: A recent change in tax rate brackets calls for a tax rate of 30% for those with income above $87500. The accounting
department issues query q1 to implement the new policy, but the predicate of the WHERE clause condition transposed two
digits of the income value.

do not have the resources nor the capability to deeply investi-
gate the reports. Instead, the standard course of action is to
correct mistakes on a case-by-case basis for each complaint.
As a result, unreported errors can remain in the database
indefinitely, and their cause becomes harder to trace as fur-
ther queries modify the database, propagate the errors, and
obscure their root cause. There is a need for tools that can
use the error reports to diagnose and identify the anomalous
queries (root causes) in the database.

In this paper, we present QFix, a diagnosis and repair
system for data errors caused by anomalous DML queries
in OLTP applications. Given a set of reported errors (com-
plaints) about records in the current database state, QFix
analyzes the sequence of historical queries executed on the
database, filters them to those that may have affected the
erroneous records, and generates diagnoses by identifying
the specific subset of queries that most likely introduced
the errors. Alongside these diagnoses, QFix also proposes
repairs for the erroneous queries; these repairs can correct the
reported errors, as well as potentially identify and fix addi-
tional errors in the data that would have otherwise remained
undetected. To derive these diagnoses and repairs, we must
address three key characteristics, which make this problem
both difficult to solve and unsuitable to existing techniques:
Obscurity. Handling data errors directly often leads to par-
tial fixes that further complicate the eventual diagnosis and
resolution of the problem. For example, a transaction im-
plementing a change in the state tax law updated tax rates
using the wrong rate, affecting a large number of consumers.
This causes a large number of complaints to a call center, but
each customer agent usually fixes each problem individually,
which ends up obscuring the source of the problem.

Large impact. Erroneous queries cause errors at a large
scale. The potential impact of the errors is high, as mani-
fested in several real-world cases [44,76,91]. Further, errors
that remain undetected for a significant amount of time can
instigate additional errors, even through valid updates. This
increases both their impact, and their obscurity.

Systemic errors. The errors created by bad queries are
systemic: they have common characteristics, as they share
the same cause. The link between the resulting data errors
is the query that created them; cleaning techniques should
leverage this connection to diagnose and fix the problem.
Diagnosing the cause of the errors will achieve systemic fixes
that will correct all relevant errors, even if they have not
been explicitly identified.
Traditional approaches to data errors take two main forms.
The first uses a combination of detection algorithms (e.g.,
human reporting, outlier detection, constraint violations) to
identify a candidate set of error values that are corrected

through human-based [41,47,52] or semi-automated means
(e.g., denial constraints [22], value imputation). Unfortu-
nately, this has the following problems: (a) it targets the
symptom (incorrect database state) rather than the under-
lying cause (incorrect queries), (b) it can be expensive to
perform, (c) it may introduce errors if the automated correc-
tions are not perfect [1], and (d) it may make it harder to
identify other data affected by the bad query.

The second form attempts to prevent data errors by guard-
ing against erroneous updates. For example, integrity con-
straints [54] reject some improper updates, but only if the
data falls outside rigid, predefined ranges. In addition, data
entry errors such as in the tax example will satisfy the in-
tegrity constraints and not be rejected, despite being incor-
rect. Certificate-based verification [20] is less rigid, but it is
impractical and non-scalable as it requires users to answer
challenge questions before allowing each update.

QFix is complementary to existing techniques: it does not
prevent errors from entering the database, and its primary
goal is not to identify errors in the data. Rather, given some
reported data errors, QFix analyzes query histories to deter-
mine how the errors entered the database. Determining the
root cause of data errors can in turn help identify additional
data errors that are due to the same cause, and which would
have potentially remained unidentified. Specifically, in this
paper, we make the following contributions:

• We formalize the problem of Query Explanation: diagnos-
ing a set of data errors using the log of update queries over
the database. Given a set of complaints as representations
of data discrepancies in the current database state, QFix
determines how to resolve all of the complaints with the
minimum number of changes to the query log (Section 2)

• We illustrate how existing synthesis, learning, and cleaning-
oriented techniques have difficulty scaling beyond a query
log containing a single query. We then introduce an exact
error-diagnosis solution using a novel mixed integer linear
programming (MILP) formulation that can be applied to
a broad class of OLTP applications. This approach uses
state-of-the-art solvers to identify optimal diagnoses that
are guaranteed to resolve all complaints without introduc-
ing new errors to the data (Section 3).

• We present a suite of optimizations that reduce the problem
size without affecting the quality of the proposed repairs.
Further, we propose a pragmatic incremental algorithm
tailored to cases when the user is looking for individual
corrupt queries (in contrast to sets of corruptions), and
show how these optimizations can scale to large datasets
(100K records, Figure 10a) and query logs (up to 2K DML
statements, Figure 6), and tolerate incomplete information
such as unreported errors (Section 6.4).
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Notation Description

Q The sequence of executed update queries (log)
Q = {q1, . . . , qn}

D0 Initial database state at beginning of log
Dn End database state (current) Dn = Q(D0)
Di Database state after query qi: Di = qi(. . . q1(D0))
c : t 7→ t∗ Complaint: Tc(D) = (Dn \ {t}) ∪ {t∗}
C Complaint set C = {c1, . . . , ck}
µq(t) Modifier function of q (e.g., SET clause)
σq(t) Conditional function of q (e.g., WHERE clause)
tnew Tuple values introduced in an INSERT query
Q∗ Log repair
d(Q,Q∗) Distance functions between two query logs

Figure 2: Summary of notations used in the paper.

• We perform a thorough evaluation of the data and query
log characteristics that influence QFix’s trade-offs between
performance and accuracy. We compare the baseline and
optimized algorithms under a controlled, synthetic setting
and demonstrate that our optimizations improve response
times by up to 40× and exhibit superior accuracy. We
also evaluate QFix on common OLTP benchmarks and
show how QFix can propose fully accurate repairs within
milliseconds on a scale 1 TPC-C workload with 2000 queries
(Section 6.2).

2. MODELING ABSTRACTIONS
In this section, we introduce a running example inspired

from the use-case of Example 1, and describe the model
abstractions that we use to formalize the diagnosis problem.

Example 2. Figure 1 demonstrates an example tax bracket
adjustment in the spirit of Example 1. The adjustment sets
the tax rate to 30% for income levels above $87,500, and
is implemented by query q1. A digit transposition mistake
in the query, results in an incorrect owed amount for tu-
ples t3 and t4. Query q2, which inserts a tuple with slightly
higher income than t3 and t4 and the correct information,
obscures this mistake. This mistake is further propagated by
query q3, which calculates the pay check amount based on the
corresponding income and owed.

While traditional data cleaning techniques seek to identify
and correct the erroneous values in the table Taxes directly,
our goal is to diagnose the problem, and understand the
reasons for these errors. In this case, the reason for the data
errors is the incorrect predicate value in query q1.

In this paper, we assume that we know some errors in
the dataset, and that these errors were caused by erroneous
updates. The errors may be obtained in different ways:
traditional data cleaning tools may identify discrepancies in
the data (e.g., a tuple with lower income has higher owed tax
amount), or errors can be reported directly from users (e.g.,
customers reporting discrepancies to customer service). Our
goal is not to correct the errors directly in the data, but to
analyze them as a “symptom” and provide a diagnosis. The
diagnosis can produce a targeted treatment: knowing how
the errors were introduced guides the proper way to trace
and resolve them.

2.1 Error Modeling
In our setting, the diagnoses are associated with errors

in the queries that operated on the data. In Example 2,
the errors in the dataset are due to the digit transposition
mistake in the WHERE clause predicate of query q1. Our

goal is to infer the errors in a log of queries automatically,
given a set of incorrect values in the data. We proceed to
describe our modeling abstractions for data, queries, and
errors, and how we use them to define the diagnosis problem.

Data and query models
Query log (Q): We define a query log that update the
database as an ordered sequence of UPDATE, INSERT, and
DELETE queries Q = {q1, . . . , qn}, that have operated on a
database D. In the rest of the paper, we use the term update
queries, or just queries, to refer to any of the queries in (Q),
including insertion and deletion queries.

Query (qi): We model each query as a function over a
database D, resulting in a new database D′. For INSERT

queries, D′ = q(D) = D ∪ {tnew}. We model UPDATE and
DELETE queries as follows:

D′ = q(D) ={µq(t) | t ∈ D,σq(t)} ∪ {t | t ∈ D,¬σq(t)}

In this definition, the modifier function µq(t) represents the
query’s update equations, and it transforms a tuple by either
deleting it (µq(t) = ⊥) or changing the values of some of
its attributes. The conditional function σq(t) is a boolean
function that represents the query’s condition predicates. In
the example of Figure 1:

µq1(t) = (t.income, t.income ∗ 0.3, t.pay)

σq1(t) = (t.income ≥ 85700)

µq3(t) = (t.income, t.owed, t.income− t.owed)

σq2(t) = true

Note that in this paper, we do not consider sub-queries or
aggregation. We clarify all assumptions later in this section.

Database state (Di): We use Di to represent the state of
a database D after the application of queries q1 through qi
from the log Q. D0 represents the original database state,
and Dn the final, or current, database state. Out of all the
states, the system only maintains D0 and Dn. In practice,
D0 can be a checkpoint: a state of the database that we
assume is correct; we cannot diagnose errors before this state.
The intermediate states can be derived by executing the log:
Di = qi(qi−1(. . . q1(D0))). We also write Dn = Q(D0) to
denote that the final database state Dn can be derived by
applying the sequence of queries in the log to the original
database state D0.

True database state (D∗i ): Queries in Q are possibly erro-
neous, introducing errors in the data. There exists a sequence
of true database states {D∗0 , D∗1 . . . , D∗n}, with D∗0 = D0, rep-
resenting the database states that would have occurred if
there had been no errors in the queries. The true database
states are unknown; our goal is to find and correct the errors
in Q and retrieve the correct database state D∗n.

For ease of exposition, in the remainder of the paper we
assume that the database contains a single relation with at-
tributes A1, . . . , Am, but the single table is not a requirement
in our framework.

Error models
Following the terminology in Example 1, we model a set of
identified or user-reported data errors as complaints. A com-
plaint corresponds to a particular tuple in the final database
state D∗n, and identifies that tuple’s correct value assignment.
We formally define complaints below:
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Definition 3 (Complaint). A complaint c is a map-
ping between two tuples: c : t 7→ t∗, such that t and t∗ have
the same schema, t, t∗ ∈ Dn ∪ {⊥}, and t 6= t∗. A complaint
defines a transformation Tc on the final database state Dn:
Tc(Dn) = (Dn \ {t}) ∪ {t∗}, which replaces t in Dn with t∗.

In the example of Figure 1, two complaints are reported
on the final database state D3: c1 : t3 7→ t∗3 and c2 : t4 7→ t∗4,
where t∗3 = (86000, 21500, 64500) and t∗4 = (86500, 21625,
64875). For both these cases, each complaint denotes a value
correction for a tuple in D3. Complaints can also model
the addition or removal of tuples: c : ⊥ 7→ t∗ means that
t∗ should be added to the database, whereas c : t 7→ ⊥ means
that t should be removed from the database.

Note that in this definition, a complaint needs to specify
the exact values for all fields of a tuple. However, this is done
for ease of exposition, and it is not an inherent restriction
in our approach. The definitions and our algorithms can
trivially generalize to handle complaints where only some of
the correct tuple values are known.

Complaint set (C): We use C to denote the set of all known
complaints C = {c1, . . . , ck}, and we call it the complaint set.
Each complaint in C represents a transformation (addition,
deletion, or modification) of a tuple in Dn. We assume that
the complaint set is consistent, i.e., there are no two com-
plaints that propose different transformations to the same tu-
ple t ∈ Dn. Applying all these transformations to Dn results
in a new database instance D′n = Tc1(Tc2(. . . Tck(Dn))).1 C
is complete if it contains a complaint for each error in Dn. In
that case, D′n = D∗n. In our work, we do not assume that the
complaint set is complete, but, as is more common in practice,
we only know a subset of the errors (incomplete complaint
set). Further, we focus our analysis on valid complaints; we
briefly discuss dealing with invalid complaints (complaints
identifying a correct value as an error) in Section 5, but these
techniques are beyond the scope of this paper.

Log repair (Q∗): The goal of our framework is to derive
a diagnosis as a log repair Q∗ = {q∗1 , . . . , q∗n}, such that
Q∗(D0) = D∗n. In this work, we focus on errors produced
by incorrect parameters in queries, so our repairs focus on
altering query constants rather than query structure. There-
fore, for each query q∗i ∈ Q∗, q∗i has the same structure
as qi (e.g., the same number of predicates and the same
variables in the WHERE clause), but possibly different param-
eters. For example, a good log repair for the example of
Figure 1 is Q∗ = {q∗1 , q2, q3}, where q∗1=UPDATE Taxes SET

owed=income*0.3 WHERE income >= 87500.

Problem definition
We now formalize the problem definition for diagnosing data
errors using query logs. A diagnosis is a log repair Q∗ that
resolves all complaints in the set C and leads to a correct
database state D∗n.

Definition 4 (Optimal diagnosis). Given database states
D0 and Dn, a query log Q such that Q(D0) = Dn, a set of
complaints C on Dn, and a distance function d, the optimal
diagnosis is a log repair Q∗, such that:

• Q∗(D0) = D∗n, where D∗n has no errors
• d(Q,Q∗) is minimized

1Since the complaint set is consistent, it is easy to see that
the order of transformations is inconsequential.

More informally, we seek the minimum changes to the log
Q that would result in a clean database state D∗n. Obviously,
a challenge is that D∗n is unknown, unless we know that the
complaint set is complete.

Problem scope and solution outline
In this work, we focus on handling data manipulation state-
ments (UPDATE, INSERT, and DELETE queries) with simple,
basic query structures without subqueries, aggregations, or
joins. Expressions (in predicates and SET clauses) may be
over linear combinations of constants and a single attribute,
and we do not support arbitrary user defined functions. We
find that the queries that we focus on are applicable to a
broad range of user-facing web applications (e.g., conference
attendee scheduling, voting, data entry) and OLTP bench-
marks, and that complex query structures and operations
are less common than in read-oriented analytical workloads.

Given a query log and a set of complaints, QFix proposes
repairs as modifications of values in one or more queries.
QFix does not modify the structure of queries, and makes
the implicit assumption that the log starts either with an
empty or a clean database. We demonstrate that QFix can
solve problems with corruptions in multiple queries, but its
scalability in this setting is limited (up to about 50 queries
in the log). For cases where corruptions are restricted to a
single query, QFix can scale to large data and log sizes.

In Section 3, we describe our basic method, which uses
a constraint programming formulation that expresses this
diagnosis problem as a mixed integer linear program (MILP).
Section 4 presents several optimization techniques that ex-
tend the basic method, allowing QFix to (1) handle cases
of incomplete information (incomplete complaint set), and
(2) scale to large data and log sizes. Specifically, the fully
optimized, incremental algorithm (Section 4.4), can handle
query logs with hundreds of queries within minutes, while the
performance of the basic approach collapses by 50 queries.

3. A MILP-BASED SOLUTION
The Optimal Diagnosis problem states that a log repair

should resolve all complaints when re-executing the repaired
log on the initial (possibly empty) database state. The
key challenge is that solutions must be able to handle data
dependencies between queries in the log (e.g., qi reads what
qj wrote). Unfortunately, this challenge renders existing
database techniques [18,89], as well as machine learning-based
approaches, infeasible because they are designed to “repair”
individual non-nested SELECT queries. Appendix A uses a
decision tree-based approach to highlight why learning-based
techniques perform poorly for even a single DML statement,
and fail to work for more than one query.

To address these cross-query dependencies, we introduce a
constraint-based approach to the Optimal Diagnosis problem.
To do so, it maps the problem into a mixed-integer linear
programming (MILP) problem by linearizing and parameter-
izing the corrupted query log over the tuples in the database.
Briefly, a MILP problem involves assigning values to a set of
undetermined variables such that they satisfy a set of linear
equations and minimize an objective function—it is mixed
because the variables may be integers or real numbers.

Our general strategy is to model each query as a linear
equation that computes the output tuple values from the
inputs and to transform the equation into a set of of linear
constraints. In addition, the constant values in the queries

4



are parameterized into a set of undetermined variables, while
the database state before and after the query is encoded as
constraints on the initial and final tuple values. Finally, the
objective function over the undetermined variables prefers as-
signments that minimize the amount that the queries change
and the number of non-complaint tuples that are affected.

The rest of this section will introduce the properties of
MILP solvers, describe how to encode a single query and
single tuple attribute, then extend the encoding procedure to
the entire database and query log. We finally define the ob-
jective function. Subsequent sections introduce optimizations
and variations of the problem.

3.1 MILP Solvers
MILP problems are known to be NP-hard with respect

to the number of constraints and undetermined variables,
however numerous pruning and pre-processing optimizations
and heuristics have made solvers very fast [5,29,68,74,78,82].
As a result, MILP solvers are both quite efficient and widely
used in practice for applications such as trajectory plan-
ning [58,60,72], assembly and scheduling processes [35,79,80],
and general decision support [38,59]. Modern solver perfor-
mance is primarily sensitive to the number of constraints and
the number of undetermined variables in the problem [8,39,63].
One of our key contributions in this paper is to use this ob-
servation to design a set of optimizations to dramatically
reduce the size of the MILP problem—enough so that we
can produce repairs for TPC-C workloads within one second.

3.2 Encoding a Single Query
MILP problems express constraints as a set of linear in-

equalities. Our task is to derive such a mathematical repre-
sentation for each query in Q. Starting with the functional
representation of a query (Section 2.1), we describe how each
query type, UPDATE, INSERT, and DELETE, can be transformed
into a set of linear constraints over a tuple t and an attribute
value Aj .

UPDATE: Recall from Section 2.1 that query qi can be mod-
eled as the combination of a modifier function µqi(t) and
conditional function σqi(t). First, we use binary variable xqi,t
to indicate whether query qi produces an effect on tuple t.

xqi,t = eqi,t ⊗ σqi(t) (1)

We use eqi,t to support DELETE statements. eqi,t is a binary
indicator of t’s existence in the database prior to qi, and
is by default set to 1 when there are no DELETE queries in
the log. If a tuple exists, then xqi,t depends on t satisfying
the condition function σqi . Otherwise, t has been deleted,
eqi,t = 0, and xqi,t will always be false. We describe how to
set eqi,t (Equation 7) when we introduce DELETE queries.

Next, we introduce real-valued variables for the attributes
of t. We express the updated value of an attribute using
semi-modules, borrowing from the models of provenance for
aggregate operations [6]. A semi-module consists of a commu-
tative semi-ring, whose elements are scalars, a commutative
monoid whose elements are vectors, and a multiplication-by-
scalars operation that takes a scalar x and a vector u and
returns a vector x⊗ u. A similar formalism has been used in
literature to model hypothetical data updates [65].

Given a query qi and tuple t, we express the value of
attribute Aj in the updated tuple t′ as follows:

t′.Aj = xqi,t ⊗ µqi(t).Aj + (1− xqi,t)⊗ t.Aj (2)

In this expression, the ⊗ operation corresponds to regular
multiplication, but we maintain the ⊗ notation to indicate
that it is a semi-module multiplication by scalars. This
expression models the action of the update: If t satisfies
the conditional function (xqi,t = 1), then t′.Aj takes the
value µqi(t).Aj ; if t does not satisfy the conditional function
(xqi,t = 0), then t′.Aj takes the value t.Aj . In our running
example, the rate value of a tuple t after query q1 would
be expressed as: t′.owed = xq1,t ⊗ (t.income ∗ 0.3) + (1 −
xq1,t)⊗ t.owed. Equation (2) does not yet provide a linear
representation of the corresponding constraint, as it con-
tains multiplication of variables. To linearize this expression,
we adapt a method from [65]: We introduce two variables
u.Aj and v.Aj to represent the two terms of Equation (2):
u.Aj = xqi,t⊗µqi(t.Aj) and v.Aj = (1−xqi,t)⊗t.Aj . Assum-
ing a number M is a large enough value [10] that is outside
of the domain of t.Aj , we get the following constraints:

u.Aj≤µqi(t).Aj v.Aj≤ t.Aj

u.Aj≤xqi,tM v.Aj≤(1−xqi,t)M (3)

u.Aj≥µqi(t).Aj−(1−xqi,t)M v.Aj≥ t.Aj−xqi,tM

The set of conditions on u.Aj ensure that u.Aj = µqi(t).Aj

if xqi,t = 1, and 0 otherwise. Similarly, the conditions on
v.Aj ensure that v.Aj = t.Aj if xqi,t = 0, and 0 otherwise.
Now, Equation (2) becomes linear:

t.A′j = u.Aj + v.Aj (4)

INSERT:An insert query adds a new tuple tnew to the database.
If the query were corrupted, then the inserted values need
repair. We use a binary variable xqi,t to model whether
the query impacts the value of tuple t. Each attribute of
the newly inserted tuple (t′.Aj) may take one of two values:
the value specified by the insertion query (tnew.Aj) if the
query changes the value of the tuple t (xqi,t = 1), or an
undetermined value (v.Aj) otherwise. Thus, similar with
Equation (2), we write:

t′.Aj = xqi,t ⊗ tnew.Aj + (1− xqi,t)⊗ v.Aj (5)

DELETE: A delete query removes a set of tuples from the
database. Since the MILP problem doesn’t have a way to
express a non-existent value, we encode a deleted tuple by
setting its attributes to a “ghost” value, M−, outside of
the attribute domain. Since M− is outside of the attribute
domain, any subsequent conditional functions will evaluate to
false, so subsequent queries do not affect ghost tuples. There
are nuances to how M− is set. It needs to be sufficiently
large, for the MILP problem to prioritize a modification
to the WHERE clause of the DELETE query (σqi(t) = 0/1),
compared to a modification of the SET clause of an UPDATE

query to the ghost value (µqi(t.Aj) = M−). However, it
should be M− ≤M to ensure the constraints remain feasible
(Equation 3). Using M− thus ensures that subsequent queries
will treat the tuple as a “ghost” and ignore it.

t′.Aj = xqi,t ⊗M
− + (1− xqi,t)⊗ t.Aj (6)

The variable xqi,t is set according to Equation (1); in Equa-
tion (1), eqi,t is set to 0 if t was deleted in qi (t.Aj = M−)
and the deletion is correct due to its presence in the com-
plaint set (t∗.Aj = M−). Otherwise, the tuple exists and
eqi,t = 1.

eqi,t = ¬((t.Aj = M−) ∧ (t∗.Aj = M−)) (7)
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Algorithm 1: Basic : The MILP-based approach.

Require: Q, D0, Dn, C
1: milp cons← ∅
2: for each t in R do
3: for each q in Q do
4: milp cons← milp cons ∪ Linearize(q, t)
5: end for
6: milp cons← milp cons ∪ AssignV als(D0.t, Dn.t, C)
7: for each i in {0, . . . , N − 1} do
8: milp cons← milp cons ∪ ConnectQueries(qi, qi+1)
9: end for
10: end for
11: milp obj ← EncodeObjective(milp cons,Q)
12: solved vals←MILPSolver(milp cons,milp obj)
13: Q∗ ← ConvertQLog(Q, solved vals)
14: Return Q∗

This expression is further linearized using the same method
as Equation (3).

Putting it all together. The constraints defined in Equa-
tions (1)–(6) form the main structure of the MILP problem
for a single attribute Aj of a single tuple t. To linearize a
query qi one needs to apply this procedure to all attributes
and tuples. This process is denoted as Linearize(q, t) in
Algorithm 1. Our MILP formulation includes three types of
variables: the binary variables xqi,t, the real-valued attribute
values (e.g., u.Aj), and the real-valued constants in µqi and
σqi . All these variables are undetermined and need to be
assigned values by a MILP solver.

Next, we extend this encoding to the entire query log, and
incorporate an objective function encouraging solutions that
minimize the overall changes to the query log.

3.3 Encoding and Repairing the Query Log
We proceed to describe the procedure (Algorithm 1) that

encodes the full query log into a MILP problem, and solves
the MILP problem to derive Q∗. The algorithm takes as
input the query log Q, the initial and final (dirty) database
states D0,n, and the complaint set C, and outputs a fixed
query log Q∗.

We first call Linearize on each tuple in D0 and each query
in Q, and add the result to a set of constraints milp cons.
The function AssignVals adds constraints to set the values of
the inputs to q0 and the outputs of qn to their respective val-
ues in D0 and TC(Dn). Additional constraints account for the
fact that the output of query qi is the input of qi+1 (Connect-
Queries). This function simply equates t′ from the linearized
result for qi to the t input for the linearized result of qi+1.

Finally, EncodeObjective augments the program with an
objective function that models the distance function between
the original query log and the log repair (d(Q,Q∗)). In the
following section we describe our model for the distance func-
tion, though other models are also possible. Once the MILP
solver returns a variable assignment, ConvertQLog updates
the constants in the query log based on this assignment, and
constructs the fixed query log Q∗.

3.4 The Objective Function
The optimal diagnosis problem (Definition 4) seeks a log

repair Q∗, such that the distance d(Q,Q∗) is minimized.
We follow similar intuition as other existing data repair
problems [28] in our objective function. In this section, we
describe our model for the objective function, which assumes
numerical parameters and attributes. This assumption is not
a restriction of the QFix framework. Handling other data

Figure 3: Log size vs. execution time for 1000 records. The
basic approach failed to complete by the time limit of 1000sec
for a log of 80 queries.

types, such as categorical values, comes down to defining an
appropriate distance function, which can then be directly
incorporated into QFix.

In our experiments, we use the normalized Manhattan
distance (in linearized format in the MILP problem) between
the parameters in Q and Q∗. We use q.parami to denote the
ith parameter of query q, and |q.param| to denote the total
number of parameters in q:

d(Q,Q∗) =

n∑
i=1

|qi.param|∑
j=1

|qi.paramj − qi.param∗j |

Different choices for the objective function are also pos-
sible. For example, one may prioritize the total number of
changes incurred in the log, rather than the magnitude of
these changes. However, a thorough investigation of different
possible distance metrics is beyond the scope of our work.

4. OPTIMIZING THE BASIC APPROACH
A major drawback of our basic MILP transformation (Sec-

tion 3) is that it exhaustively encodes the combination of all
tuples in the database and all queries in the query log. In
this approach, the number of constraints (as well as unde-
termined variables) grows quadratically with respect to the
database and the query log. This increase has a large im-
pact on the running time of the solver, since it needs to find
a (near)-optimal assignment of all undetermined variables
(exponential with the number of undetermined variables).
This is depicted in Figure 3, which increases the query log
size over a database of 1000 tuples. The red bars encode
the problem using the basic algorithm that parameterizes
all queries, while the blue bars show the potential gain of
only parameterizing the oldest query that we assume is in-
correct. Beyond 80 queries, basic fails to produce an answer
within 1000 seconds. Although MILP solvers exhibit empir-
ical performance variation, this experiment illustrates the
performance limitation of the basic approach.

A second limitation of basic is its inability to handle errors
in the complaint set. This is because the basic MILP for-
mulation generates hard constraints for all of the database
records, thus any error, whether a false negative missing
complaint or a false positive incorrect complaint, must be
correct. It may be impossible to find a repair that satisfies
this condition and will lead to solver infeasibility errors.

The rest of this section describes three classes of slicing
optimizations that reduce the number of tuples, queries, and
attributes that are encoded in the MILP problem. The tuple-
slicing technique additionally improves the repair accuracy
when the complaint set is incomplete. We also propose an
incremental algorithm that avoids the exponential increase in
solver time by only parameterizing a small number of queries
at a time—thus limiting the cost to the left side of Figure 3.
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Figure 4: Graphical depiction of correct (a) and over-
generalized (b) repairs. Solid and empty circles represent
complaint and non-complaint tuples. Each thick line rep-
resents the interval of query q’s range predicate. Dirty:
incorrect interval in corrupted query; truth: correct interval
in true query; repair: interval returned by the solver.

4.1 Tuple Slicing: Reducing Tuples
Our first optimization, tuple-slicing, applies a two step

process to reduce the problem size without sacrificing accu-
racy: it first aggressively reduces the problem size by only
encoding tuples in the complaint set and then refines the log
repair through a second but much smaller MILP problem.

Step 1 (Initial Repair Step): The first step of tuple slic-
ing aggressively reduces the problem size by only encoding
those tuples in the complaint set C (Algorithm 1 line 2 is
replaced with for each t in C). Each tuple necessitates
the linearization of the entire query log, thus, only encoding
the complaint tuples minimizes the size of the problem with
respect to the relevant tuples. This optimization is guaran-
teed to resolve C, thus depending on the properties of the
non-complaint records, it can generate correct repairs an
order of magnitude faster without hurting the accuracy. In
Figure 4(a), the solver will guarantee a repair interval that
excludes the two left-most complaints, includes the two right-
most complaints, and minimizes the difference between the
dirty and repaired intervals (due to the objective function).
This effectively pushes the repair’s lower-bound towards that
of the dirty interval. This is a case where such a solution is
correct, because the dirty and truth intervals overlap. Recall
that we do not have access to the truth interval, and our
goal is to reproduce the truth interval given C (solid circles)
and the corrupted query.

However, this approach can also cause the repair to be a
superset of the truth interval, and affect tuples not part of
the complaint set. Figure 4(b) highlights such a case where
the dirty and truth intervals are non-overlapping, and the
non-complaint record between them has been incorrectly
included in the repair interval—because the MILP problem
did not include the non-complaint.

In both of these cases, the objective function will ensure
that the repair does not over-generalize the upper bound
towards the right because that strictly increases the objective
function. Therefore, our main concern is to refine the repair
interval to exclude those non-complaint tuples in case (b).
Note that in the case of incomplete complaint sets, the user
may choose to not execute the refinement step if she believes
that the non-complaint records are indeed in error.

Step 2 (Refinement Step): Although there are many pos-
sible mechanisms to refine the initial repair (e.g., incremen-
tally shrinking the repaired interval until the non-complaint
tuples are all excluded), the straightforward approaches are
not effective when multiple corrupt queries have been repaired
because they don’t take the query interactions into account.

Instead, we solve this with a second, significantly smaller,
MILP problem. Let Q∗rep be the set of repaired queries from

the initial MILP formulation with tuple slicing; NC be the
set of non-complaint tuples now matching the repaired WHERE

clauses, as in Figure 4(b); and C+ = C ∪ NC. We create a
new MILP using C+ as the complaint set. The key is to only
parameterize the repaired clauses from Step 1 as constraints
with undetermined variables. The variables for all other
tuples and queries are fixed to their assigned values from
Step 1. This refines the solutions from the previous step while
incorporating knowledge about complaints in NC, Finally, we
use a new objective function to minimize the number of non-
complaint tuples t ∈ NC that are matched by the solution.

In our experiments, we find that this second MILP iteration
adds minimal overhead (0.1 − 0.5%) with respect to the
initial MILP problem. Tuple-slicing is a heuristic method
that decomposes a large MILP problem into two, typically
much smaller, MILP problems. It is effective in practice and
greatly helps improve QFix performance, especially when
the ratio of the complaint set size and the database size
is small. In general, this heuristic can result in incorrect
repairs. However, if corruptions are restricted to a single
query, the complaint set is complete, and incremental repair
is employed (Section 4.4), we can guarantee that tuple slicing
will not lead to loss of accuracy using a small modification:
By disallowing non-complaint tuples in the refinement step
(e.g., by restricting the value of the objective function in the
refinement MILP to zero), the solver will be forced to pick
the correct repair.

4.2 Query Slicing: Reducing Queries
In practice, many of the queries in the query log could not

have affected the complaint attributes (defined below). For
example, if qN−1 and qN only read and wrote attribute A1,
then they could not have contributed to an error in A2. How-
ever, if qN wrote A2, then either or both queries may have
caused the error. In short, if we model a query as a set of at-
tribute read and write operations, those not part of the causal
read-write chain to the complaint attributes can be ignored.
This is the foundation of our query-slicing optimization.

Definition 5 (Complaint Attributes A(C)). The set
of attributes identified as incorrect in the complaint set.

A(C) = {Ai|t.Ai 6= t∗.Ai, c(t, t
∗) ∈ C}

We proceed to define the impact that a query has directly
(the set of attributes it modifies), and its full impact (the set
of attributes it may affect through all subsequent queries).

Definition 6 (Query dependency & impact). Query
qi has direct impact, I(qi), which is the set of attributes
updated in its modifier function µqi , and dependency, P(qi),
which is the set of attributes involved in its condition function
σqi . We use Fj(qi) to denote the impact of qi on the output
of qj (j ≥ i):

Fj(qi) =


Fj−1(qi) ∪ I(qj), if j > i ∧ Fj−1(qi) ∩ P(qj) 6= ∅
Fj−1(qi), if j > i ∧ Fj−1(qi) ∩ P(qj) = ∅
I(qi), otherwise

Thus, query qi’s full impact—the set of attributes it may
affect through all subsequent queries in the log—is its impact
to the most recent query: F(qi) = Fn(qi).

Full impact is a form of forward provenance: it traces the
query history toward more recent queries and extending the
impact of a query to include every attribute that may have
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Algorithm 2: FullImpact : Algorithm for finding F(q).

Require: Q, qi
F(qi)← I(qi)

2: for each qj in qi+1, ..., qn ∈ Q do
if F(qi) ∩ P(qj) 6= ∅ then

4: F(qi)← F(qi) ∪ I(qj)
end if

6: end for
Return F(qi)

Algorithm 3: Inck : The incremental algorithm.

Require: Q,Dj ,Dn, C, k
Sort Q from most to least recent

2: for each qi...qi+k ∈ Q do
Qsuffix = {qj |j ≥ i}

4: Q∗ ← Basicparams(Qsuffix,Dj ,Dn, C, {qi, qi+k})
if Q∗ 6= ∅ then

6: Return Q∗

end if
8: end for

been affected by it. For example, assume the following query
log: {q1 writes A; q2 reads A writes B, q3 reads B writes C}.
The direct impact of q1 is {A}. Through q2, it extends to
{A,B}, and it’s full impact (after q3) is {A,B,C}.

Based on the full impact of q, we can determine if it affects
the complaints C and is a candidate for repair. Specifically, if
F(q)∩A(C) = ∅, then q does not contribute to the complaints
and can be ignored in the repair process; otherwise, it is a
candidate for repair. In the case of single-query corruptions,
q is a candidate for repair only if F(q)∩A(C) = A(C), which
makes this optimization even more effective.

We use Rel(Q) to denote the set of queries that are can-
didates for repair. Query slicing only linearizes the queries
in Rel(Q) which is a conservative estimate of all queries
that may have affected the user complaints. Since this set is
typically much smaller than the entire query log, this opti-
mization leads to smaller problems than basic without any
loss of accuracy. We formalize this result in Lemma 7.

4.3 Attribute Slicing: Reducing Attributes
In addition to removing irrelevant queries, we additionally

avoid encoding irrelevant attributes. Given Rel(Q), the rele-
vant attributes can be defined as: Rel(A) = ∪qi∈RelQ(F(qi)∪
P(qi)) We propose attribute slicing optimization that only
encodes constraints for attributes in Rel(A). We find that
this type of slicing can be effective for wide tables along with
queries that focus on a small subset of attributes.

Similar to query slicing, this optimization removes only
non-relevant attributes through static analysis of the query
log. Thus, it reduces the problem size without loss of accuracy.
We formalize the soundness of the query and attribute slicing
in the following lemma.

Lemma 7. If R is a set of repairs that QFix produces
under no slicing optimizations, then QFix will produce the
same repairs R under query and attribute slicing.

4.4 Incremental Repairs
Even with the slicing optimizations, the number of unde-

termined variables can remain high, resulting in slow solver
runtime. The red bars in Figure 3 showed the exponential
cost of parameterizing the entire query log as compared to
only solving for a single query (blue bars). These results sug-

gest that it is faster to run many small MILP problems than
a single large one, and motivates our incremental algorithm.

Our Inck approach (Algorithm 3) focuses on the case where
there is a single corrupted query to repair. It does so by
linearizing the full query log, including any slicing optimiza-
tions, but only parameterizing and repairing a batch of k
consecutive queries at a time. This procedure first attempts
to repair the k most recent queries, and continues to the
next k queries if a repair was not generated. The algorithm
internally calls a modified version of the basic approach that
takes extra parameters {qi, qi+k}, only parameterizes those
queries, and fixes the values of all other variables.

The incremental approach prioritizes repairs for complaints
that are due to more recent corruptions. Given that the basic
algorithm simply fails beyond a small log size, we believe this
is a natural and pragmatic assumption to use, and results in
a 10× scalability improvement. Our experiments further eval-
uate different batching levels k in the incremental algorithm
and show that it is impractical from both a performance and
accuracy to have k > 1.

5. NOISY COMPLAINT SETS
As described in the problem setup (Section 2.1), complaint

sets may be imperfect. First, complaint sets are typically
incomplete, missing errors that occur in Dn, but are not
reported. In this case, the naive encoding of the query log
and database (basic) will likely produce an infeasible MILP.
In the running example of Figure 1, if the complaint set is
incomplete and only contains a complaint on t4, basic will
interpret t3 as a correct state and repairing the condition of
q1 to a value greater than $86500 will appear to introduce
a new error. The solver will declare the problem infeasible
and will not return a solution.

However, the tuple slicing optimization (Section 4.1) im-
plicitly corrects this problem: By only encoding the tuples
in the incomplete complaint set, the encoded problem does
not enforce constraints on the query’s effect on other tuples
in the database. This allows the result to generalize to tu-
ples not in the complaint set. The second iteration of the
MILP execution then uses a soft constraint on the number of
non-complaint tuples that are affected by the repair in order
to address the possibility of over-generalization.

Another possible inaccuracy in the complaint set is the
presence of false positives: some complaints may be incor-
rectly reporting errors, or the target tuple t∗ of a complaint
may be incorrect. This type of noise in the complaint set
can also lead to infeasibility. One can remove such erroneous
complaints as a pre-processing step, using one of numerous
outlier detection algorithms. While this is an interesting
problem, it is orthogonal to the query repair problem that
we are investigating in this work. Thus, in our experiments,
we focus on incomplete complaint sets and assume that there
are not erroneous complaints.

6. EXPERIMENTS
We now study the sensitivity of the basic, optimized and in-

cremental variations of the QFix algorithm to changes in the
database and query log characteristics. Due to the difficulty
of collecting corrupt query logs from active deployments, we
try to understand these trade-offs in controlled synthetic
scenarios, as well as for queries from two widely used OLTP
benchmarks.
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(a) Performance for different query types. (b) Performance of diff. query clause types. (c) Query dimensionality vs time.

Figure 5: QFix can repair INSERT and DELETE workloads quickly; complex UPDATE queries are more expensive to repair.

Figure 6: QFix quickly produces repairs for OLTP workloads.

To this end, we first focus on the case of single query
corruptions and evaluate the optimized QFix incremental al-
gorithm on two OLTP benchmarks (Section 6.2) and find that
QFix can return high quality repairs in interactive speeds.
We then evaluate the variations of the incremental algorithm
in a wide range of controlled database and query log settings
(Section 6.3) Finally, we evaluate the incremental and basic
algorithms on more challenging settings of incomplete com-
plaint sets and multiple query corruptions and discuss why
the latter setting is fundamentally difficult (Section 6.3.1).
All experiments were run on 12x2.66 GHz machines with
16GB RAM running IBM CPLEX [26] as the MILP solver on
CentOS release 6.6. In the following text, QFix refers to the
incremental algorithm with the tuple-slicing optimization:
this setting works well in most OLTP benchmark settings
because the tables seldom have more than 50 attributes; Sec-
tion 6.3.2 shows how attribute and query-slicing can further
improve performance a wide (up to 500 attributes) tables.
We refer the reader to Appendix A for a study of alternative
machine learning-based repair algorithms.

6.1 Experimental Setup
For each of our experiments we generate and corrupt a

query log. We execute the original and corrupt query logs on
an initial (possibly empty) database, perform a tuple-wise
comparison between the resulting database states to generate
a true complaint set, and simulate incomplete complaint sets
by removing a subset of the true complaints. Finally, we
execute the algorithms and compare the repaired query log
with the true query log, as well as the repaired and true
final database states, to measure performance and accuracy
metrics. Performance is measured as wall clock time between
submitting a complaint set and the system terminating af-
ter retrieving a valid repair. Accuracy is reported as the
repair’s precision (percentage of repaired tuples that were
correctly fixed), recall (the percentage of the full complaint
set that was repaired), and F1 measure (the harmonic mean
of precision and recall). These metrics measure whether the
complaint tuples are repaired correctly, but it is possible that
the repaired query differs from the true query. We separately
evaluate whether QFix selects the right query to repair; these

results are included in Appendix B. In summary, we find that
QFix always fixes the right query when the complaint set is
complete. However, the less complete the complaint set, and
the older the corruption, the more likely it is that QFix will
repair the wrong query. Our experiments report averages
across 20 runs. We describe the experimental parameters in
the context of the datasets and workloads below.

Synthetic: We generate an initial database of ND random
tuples. The schema contains a primary key id along with Na

attributes a1 . . . aNa , whose values are integers picked from
[0, Vd] uniformly at random. We then generate a sequence
of Nq queries. The default setting for these parameters are:
ND = 1000, Na = 10, Vd = 200, Nq = 300.
UPDATE queries are defined by a SET clause that assigns

an attribute a Constant or Relative value, and a WHERE
clause can either be a Point predicate on a key, or a Range
predicate on non-key attributes:

SET Clause: WHERE Clause:
Constant: SET (a_i=?), .. Point: WHERE a_j=? & ..
Relative: SET (a_i=a_i+?) Range: WHERE a_j in [?,?+r] & ..

where ?∈ [0, Vd] is random and r is the size of the range
predicate. Query selectivity is by default 2% (r= 4). Note
that a range predicate where r = 0 is distinct from a Point
predicate due to the non-key attribute. The WHERE clauses
in DELETE queries are generated in an identical fashion, while
INSERT queries insert values picked uniformly at random from
Vd. By default, we generate UPDATE queries with non-key
range predicates and constant set clauses.

Benchmarks: We use the TPC-C [25] and TATP [88]
benchmarks. The former generates the ORDER table at scale
1 with one warehouse, and uses the queries that modify the
ORDER table. We execute a log of 2000 queries over an initial
table containing 6000 tuples. 1837 queries are INSERTs and
the rest are UPDATEs. The latter TATP workload simulates
the caller location system. We generate a database from SUB-
SCRIBER table with 5000 tuples and 2000 UPDATE queries.
Both setups were generated using the OLTP-bench [31].

Corrupting Queries: We corrupt query qi by replacing it
with a randomly generated query of the same type based
on the procedures described above. To standardize our pro-
cedures, we selected a fixed set of queries indexes based on
their age with respect to the most recent query. For instance,
an age of 50 means the corruption was 50 queries ago on
qNq−50. We call this parameter the Corruption Age.

6.2 Benchmark Results
In this experiment, we vary the location of a single corrupt

query in the TPC-C and TATP benchmark query logs and
report QFix’s performance; in all runs, QFix achieves an
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(a) # of attributes vs time (ND = 100). (b) Database size vs time (Na = 100).

Figure 7: For datasets with many attributes or many records, the optimizations result in significant improvements.

F1 score of 1. Figure 6 shows that QFix can generate a
repair for TPC-C and TATP within milliseconds and tens
of seconds, respectively. The key reason is that in practice,
each query affects a small set of records and results in a
very small complaint set—1− 2 on average. Tuple and query
slicing are also able to aggressively reduce the total number
of constraints to < 100 constraints on average.

QFix can repair TPC-C queries are predominantly INSERTs,
which QFix can solve within milliseconds. In contrast, TATP
only contains UPDATEs, which are harder to solve than INSERT

queries and thus lead to higher execution time compared with
TPC-C queries. Note that these experiments stripped out
read-only queries from the workload, which account for 8 and
80% of the queries in TPC-C and TATP, respectively. Finally,
QFix repairs Example 1 in Figure 1 within 35 milliseconds.

Takeaways: many workloads in practice are dominated
by INSERT and point UPDATE queries (ignoring the dominant
percentage of read-only queries). In these settings, QFix is
very effective at reducing the number of constraints and can
derive repairs with near-interactive latencies.

6.3 Sensitivity of the Incremental Algorithms
This subsection evaluates the efficacy of using each slicing

optimization on the incremental algorithm by varying the
characteristics of the database and query log. By default,
the tuple-slicing optimization is always enabled because the
algorithms are unable to scale beyond 50 queries without
it (Figure 3). We report performance and omit accuracy
numbers because the F1 for all settings is nearly 1.

6.3.1 Sensitivity to the Query Log
The following experiments evaluate QFix (incremental with

all optimizations) under differing query log characteristics.
We first vary the query type and find that UPDATE queries
are the most expensive query type to repair. We then focus
solely on UPDATE-only workloads and vary query complexity
and predicate dimensionality. The database is set to the
default settings (Na = 10, ND = 1000, Nq = 300) and we
vary the location of the single corrupt query.

Query Type: This experiment compares QFix over IN-

SERT, DELETE, or UPDATE-only query logs to test the effect
of the query type. Figure 5a shows that while the cost of
repairing INSERT workloads remains relatively constant, the
costs for DELETE-only and UPDATE-only workloads increase
as the corruption happens earlier in the query log—and a
much faster rate for UPDATE queries. This is because UPDATE

queries translate into more undetermined variables than IN-

SERT or DELETE queries, and are significantly more expensive
to repair. For this reason, our subsequent experiments focus
specifically on the more challenging UPDATE-only workloads.

Query Clause Type: So far, we have focused on UP-

DATE queries with constant set clauses and range predicates

(Constant/Range). Figure 5b compares this against Constan-
t/Point and Relative/Range UPDATE query workloads. We
found that point predicates are easier to solve than range
predicates because 1) the latter doubles the number of un-
determined variables as compared to point predicates and
2) point queries are on key attributes, which further reduces
the MILP search space. In addition, constant set clauses are
easier than relative set clauses because the former breaks
the causal relationship between input and output records for
the overwritten values. This both simplifies the difficulty
of the constraint problem, and reduces the total number of
constraints.

Predicate Dimensionality: Figure 5c varies the dimen-
sionality of the update queries by increasing the number
of predicates in the WHERE clause, while keeping the query
cardinality constant (so the number of complaints is fixed).
The cost increases with the dimensionality because each addi-
tional predicate is translated into a new set of constraints and
undetermined variables, increasing the problem complexity.

Takeaways: we find UPDATE-workloads are on average sig-
nificantly harder than workloads with other types of queries,
and that performance is closely related to the complexity
and the dimensionality of queries. In the challenging setting
of range UPDATE-only workloads, QFix find a repair within
seconds or minutes for 200 queries—particularly if the cor-
ruption is recent.

6.3.2 Sensitivity to Database Properties
The following two experiments compare different combi-

nations of the slicing optimizations tuple/query/attr under
varying database size and schema size settings. The query
log contains the default Nq = 300 Constant/Range UPDATE

queries. Each facet (subplot) in Figure 7 represents the
location of the corruption as qNq−250, qNq−100, qNq−0.

# of Attributes: We first vary the number of attributes
(Na ∈ [10, 500]) under a fixed database size ND = 100. As
shown in Figure 7a, when the number of attribute in a table
is small (e.g., Na = 10) or when the corruption is recent (e.g.,
q200,300), then all optimizations appear identical. However,
increasing the number of attribute exhibits a larger benefit
for query and attribute slicing (up to 6.8× reduction com-
pared to tuple-slicing). When the table is wide (Na = 500),
applying all optimizations (inc1 − all) is 40× faster than
tuple-slicing alone.

Database Size: We vary the database size (ND ∈ [1k, 100k])
with a large number of attributes (Na = 100). We fix the
number of complaints by decreasing the query selectivity in
proportion to ND’s increase—the specific mechanism to do
so did not affect the findings. Figure 7b shows that the costs
are relatively flat until the corruption occurs in an old query
(Corruption Age = 250). In addition, we find that the cost
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(a) False negatives vs time. (b) False negatives vs accuracy.

Figure 8: Incomplete complaint sets improve repair speed
due to less complaints, but degrade repair quality for older
corruption (with higher Corruption Age).

is highly correlated with the number of candidate queries
and attributes that are encoded in the MILP problem. The
increase in cost despite tuple-slicing is due to the increasing
number of candidate queries and attributes in the system;
we believe this increasing trend limits the solver’s ability to
prune constraints that correspond to queries and attributes
that clearly will not affect the complaint set—an implicit
form of query and attribute slicing. Ultimately, combining
all three optimizations outperforms tuple-slicing by 2− 3×.

Takeaways: we find that repair performance is sensitive
to the number of attributes and the number of tuples in the
database, particularly when the corruption is old. Tuple
slicing is essential to solve general problems, while attribute
and query slicing show significant gain for datasets with a
large number of attributes.

Overall Performance Takeaways: QFix fundamentally re-
lies on MILP solvers to produce repairs. This comes with
two scalability limitations evident in QFix: (1) current solver
limitations have trouble scaling to very large problem sizes,
and (2) generating very large problems is memory-intensive
with respect to the data and log size. We use almost all mem-
ory on the experiment machines with 100 attributes, 100k
tuples, and 250 queries. Techniques to address or side-step
these limitations will be valuable in future work.

6.4 More Challenging Repair Settings
In this section, we further study the performance of QFix

in solving hard problems—when the set of complaints is
incomplete, and when there is more than one corruption that
led to the complaints2.

Incomplete Complaint Set: The first experiment (Fig-
ures 8a and 8b) varies the false negative rate in incomplete
complaint sets. We increase the rate from 0 (0% missing in
the complaint set) to 0.75 (75% are missing). We find that
reducing the number of reported complaints lowers the run-
time; however, we observe a small reduction in repair quality
(precision and recall in Figure 8b) for recent corruptions
and a significant drop for older ones. This is expected: the
less information we have on the problem (fewer complaints),
the lower our ability to fix it correctly. In the extreme case
where very few complaints are available, the problem can be
under-specified, and the true repair harder to identify.

2 Note that even when there are multiple corruptions in the
log, the incremental algorithm may still be applicable if only
one is responsible for the set of complaints. We leave this
study to future work.

(a) Multi-corrupt. vs time. (b) Multi-corrupt. vs accuracy.

Figure 9: Our analysis highlights limitations of basic, the value
of tuple-slicing, and the high cost of UPDATE queries.

Multiple Corrupt Queries: This experiment studies how
the basic algorithm, along with the slicing optimizations, are
able to repair complaints resulting from multiple corrupt
queries. We use the default settings, vary the number of
corruptions using the following procedure: we corrupt every
tenth query in the log starting from oldest query q1, and vary
the UPDATE-only query log size in increments of 10 within
[10, 50] inclusive. For example, when the Nq = 30, we corrupt
queries q1,11,21.

We find that all variants of basic have difficulty scaling
beyond 30 queries (consistent with the case with one cor-
rupt query in Figure 3), although tuple and query slicing
modestly improve repair performance and quality. In addi-
tion, the number of corruptions and queries greatly affect
the scalabality (Figure 9a) and the accuracy (Figure 9b) of
the algorithms. Specifically, as the corruptions increase, the
number of possible assignments of the MILP parameters in-
creases exponentially and the solver often takes longer than
our experimental time limit of 1000 seconds and returns
an empty result. We find that problem infeasibility is the
predominant explanation for why the accuracy degrades past
30 queries. For example, with 40 queries (4 corruptions),
basic takes nearly 750s; however if we ignore the infeasible
executions, the average is 300 seconds and the precision and
recall are greater than 0.94. Unfortunately, with 50 queries (5
corruptions), all runs are infeasible and exceed the time limit.

Takeaways: QFix solves recent errors (e.g., errors in most
recent 100 queries) efficiently and effectively even with very
incomplete complaint information. Also, basic, even with
slicing optimizations, has severe scalability limitations due to
the large number of undetermined variables—this is unsur-
prising as MILP constraint solving is an NP-hard problem.
This result highlights the value of the incremental algorithm
optimization.

7. RELATED WORK
QFix tackles the problem of diagnosis and repair in rela-

tional query histories (query logs). However, since QFix does
not modify the query structure, one could frame this as a
data diagnosis and repair problem: Queries are represented
in a relation Rq where each tuple is a record of a query and
its parameters, and the log is modeled as a single nested
SELECT query over Rq and D0. The result of this query is a
view representing the final database state Dn and complaints
are errors annotated on this view. Prior work has focused
on the problem of identifying the source tuples responsible
for errors in the output. However, the existing techniques
are not effective for this problem: Some of the existing work
focuses on aggregate queries [75, 89] and there is no direct
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mapping between an aggregate function and individual error
tuples. Descriptive and prescriptive cleaning [17] uses the
lineage of output errors to identify the input tuples that are
connected to most errors. This intuition is not suitable for
our problem setting, because there is no causal relationship
between the coverage of an update and the likelihood of
error (a query that updates the entire database is no more
likely to be incorrect than a query that updates a single
tuple). Finally, causality techniques [64] are inefficient and
cannot scale because the problem size grows exponentially.
Moreover, they do not produce repairs.

QFix does not aim to correct errors in the data directly,
but rather to find the underlying reason for reported errors
in the queries that operated on the data. This is in contrast
to traditional data cleaning [28,34,51,70,71] which focuses
on identifying and correcting data “in-place.” Identifying
and correcting errors is an important, and rightfully well-
studied problem. Existing literature has supplied a variety of
tools to capture errors originating from data integration [2],
recognizing the same entities in data [46,56], identifying true
facts among conflicting data [32,92,93], and language support
for cleaning [37]. All of these techniques are complementary
to our work. Their goal is to identify which data is correct and
which data is incorrect, but they don’t look for the sources
of these errors in the processes or queries that generate and
modify this data. In fact the output of such methods can
be used to augment the complaint sets used by QFix, which
focuses on identifying errors in the queries that produced the
data, rather than the data itself.

An aspect of data cleaning focuses on providing repairs for
the identified errors [22]. Tools in this domain have targeted
different methods and interactions for providing fixes, ranging
from rules [12, 24] and functional dependencies [22, 34], to
interactive methods that solicit user feedback [71, 90]. As
with the other data cleaning approaches, all these techniques
again operate on the data directly. In contrast, QFix analyzes
errors in the data to diagnose and repair errors in queries that
operated on the data. Thus, QFix leverages the fact that
some data errors are systemic, linked to erroneous updates.
Diagnosing the cause of the errors, will achieve systematic
fixes that will correct all relevant errors, even if they have
not been explicitly identified.

Closer to exploring systemic reasons and patterns for er-
rors are systems such as Data Auditor [42, 43] and Data
X-Ray [87]. Both tools tools identify features, which can be
selected from the tuple attributes, that best summarize or
describe groups of tuples (or specifically errors). While these
tools can generate feature sets or patterns of attributes that
characterize errors, these are not linked to the queries, but are
again characterizations over the data itself. Such techniques
can be tremendously useful if the processes that generate
or modify the data are unknown or black-box computations.
In these cases, Data Auditor and Data X-Ray can provide
high-level clues for potential problems in the data derivation
process. However, both approaches are oblivious to the actual
queries that operated on the data, and they do not provide
particular fixes. Ontology-based why-not explanations [83]
is similar to Data X-Ray, but only relevant to absent tuples
(deletions), and does not consider the query history.

The topic of query revisions has been studied in the context
of why-not explanations [18]. These scenarios investigate
the absence of answers in a query result, and often attempt
to modify the query to change its outcome. Skyline refine-

ment [85] focuses specifically on refinements that use skyline
queries, while semi-automatic SQL debugging [86] revises
a given query to make it return specified tuple groups in
its output. Furthermore, Query-by-example [94] and query
correction [3] are similar problems that generate or mod-
ify queries based on user interaction such as desired result
records. All these approaches are limited to selection pred-
icates of SELECT queries, and they only typically consider
one query at a time. In contrast, QFix handles update
workloads, processes large query histories, and can model
several steps in the dataset’s evolution. A lot of explanation
work [11,30,33,40,55,84] targets specific application domains,
limiting its applicability to our setting.

Finally, as QFix traces errors in the queries that manipu-
late data, it has connections to the field of data and workflow
provenance. Our algorithms build on several formalisms in-
troduced by work in this domain. These formalisms express
why a particular data item appears in a query result, or
how that query result was produced in relation to input
data [15,21,27,45].

8. SUMMARY AND DISCUSSION
The general problem of data errors is complex, and ex-

acerbated by its highly contextual nature. We believe that
an approach to explain and repair such data errors, based
on operations performed by the application or user, is a
promising step towards incorporating contextual hints into
the analysis process.

Towards this goal, QFix is the first framework to diagnose
and repair errors in the queries that operate on the data.
Datasets are typically dynamic: even if a dataset starts
clean, updates may introduce new errors. QFix analyzes
OLTP query logs to trace reported errors to the queries that
introduced them. This in turn helps identify additional errors
in the data that may have been missed and gone unreported.

We proposed basic which uses non-trivial transforma-
tion rules to encode the data and query log as a MILP
problem. We further presented two types of optimizations:
(1) slicing-based optimizations that reduce the problem size
and often improve, rather than compromise accuracy, and
(2) an incremental approach that analyzes one query at a
time. Our experiments show that the latter significantly
increases the scalability and latency of repairing single-query
corruptions—at interactive speeds for OLTP benchmarks
such as TPC-C—without significant reduction in accuracy.

To the best of our knowledge, QFix is the first formalization
and solution to the diagnosis and repair of errors using
past executed queries. Obviously, correcting such errors in
practice poses additional challenges. The initial version of
QFix described in this paper focuses on a constrained problem
consisting of simple (no subqueries, complex expressions,
UDFs, aggregations, nor joins) single-query transactions
with clauses composed of linear functions, and complaint
sets without false positives. In future work, we hope to
extend our techniques to relax these limitations towards
more complex query structures and towards support for
CRUD-type web application logic. In addition, we plan
to investigate additional methods of scaling the constraint
analysis, as well as techniques that can adapt the benefits of
single-query analysis to errors in multiple queries.
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APPENDIX
A. A LEARNING-BASED APPROACH

A drawback of the MILP approach is that the generated
models grow with the size of the database and query log.
However, we argue that the encoded information is necessary
in order to generate a sufficient set of constraints that result
in a good repair. In this section, we examine an alternative,
simpler, decision tree-based approach called DecTree. We
show that even in a simple case of a single query log and
a complete complaint set, it is expected to perform poorly.
We will first describe how to model the repair process us-
ing a decision tree, and then we will present and discuss
experimental results that illustrate its limitations.

A.1 Modeling Repairs with Decision Trees
Rule-based learners are used in classification tasks to gener-

ate a set of rules, or conjunctive predicates that best classify
a group of labeled tuples. The rules are non-overlapping,
and each is associated with a label—a tuple that matches a
given rule is assigned the corresponding label. These rules
exhibit a natural parallel with SQL WHERE clauses, which
can be viewed as labeling selected tuples with a positive
label and rejected tuples with a negative label. Similarly,
the structure of the rules is identical to those that QFix is
designed to repair. Thus, given the database tuples labeled
to describe the errors, we may use a rule-based learner to
generate the most appropriate WHERE clause. We focus our
attention on rule-based learners; specifically, we experiment
with the C4.5 [69] decision tree learner, which is an exemplar
of rule-based learners.

A core limitation of this classification-based approach is
that there is no means to repair SET clauses, which modify
data values rather than simply label them. We resolve this
with a two step approach. We first use the decision tree
to generate a repair for the WHERE clause, and then use the
modified query to identify repairs for the SET clause. The
need for this two step procedure limits this approach to
encoding and repairing at most one query at a time.
Repairing the WHERE Clause: The WHERE clause of an
update query is equivalent to a rule-based binary classifier
that splits tuples into two groups: (1) tuples that satisfy the
conditions in the WHERE clause and (2) tuples that do not. A
mistake in a query predicate can cause a subset of the tuples
to be misclassified, and in turn, translate into data errors.
Therefore, repairing the complaints corresponds to repairing
the imprecise classification.

The repair works as follows: For an incorrect query q,
let D0 be the database state before q, and D∗1 the correct
database state that should have been the result after q, if
q were correct. We use each tuple t ∈ D0 as an element in
the input training data for the classifier where the values (of
each attribute) of t define the feature vector and the label
for t:

label(t) =

{
true if D0.t 6= D∗1 .t

false otherwise

The true rules generated by the decision tree trained on this
labeled dataset forms a disjunction of rules that constitute
the repaired WHERE clause.
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(a) Comparison on Performance.

(b) Comparison on Accuracy.

Figure 10: DecTree compared with QFix

Repairing the SET Clause: The WHERE clause repair pro-
posed by the classifier may not completely repair the com-
plaints if there was also an error in the SET clause. In this
case, we execute a second repair step.

We model the errors as a simple linear system of equa-
tions: each expression in the SET clause is translated into a
linear equation in the same fashion as described in Section 3.
Directly solving the system of equations for the undeter-
mined variables will generate the desired repair for the SET

expression.

A.2 Experimental Results
To illustrate these shortcomings, we compare DecTree with

QFix using a simplified version of the setup from Section 6
that favors DecTree. We restrict the query log to contain a
single query that is corrupted, use a complete complaint set
and vary the database size. We use the following query tem-
plate, where all SET clauses assign the attributes to constants,
and the WHERE clauses consist of range predicates:

UPDATE table
SET (a_i=?), ...
WHERE a_j in [?,?+r] AND ...

Figure 10a shows that although the runtime performance
of DecTree is better than QFix by small a constant factor (∼
2.5×), both runtimes degrade exponentially. In addition, the
DecTree repairs are effectively unusable as their accuracy is
low: the F1-score starts at 0.5 and rapidly degrades towards 0.
From these empirical results, we find that DecTree generates
low-quality repairs even under the simplest conditions—an
approach that applies DecTree over more queries is expected
to have little hope of succeeding.

There are three important reasons why DecTree, and any
approach that focuses on a single query at a time3, will not
perform well.

• Single Query Limitation: In principle, one could
attempt to apply this technique to the entire log one query

3Although our incremental approach tries to generate a repair
for a single query at a time, it encodes all subsequent queries
in the log.

at a time, starting from the most recent query. Even
ignoring the low repair accuracy shown in Figure 10b,
this approach is infeasible. Consider that we generate
a labeled training dataset to repair qi using the query’s
input and output database states Di−1 and D∗i . Note that
D∗i is the theoretically correct database state assuming
no errors in the query log. We would need to derive
D∗i by applying the complaint set to Dn to create D∗n,
and roll back the database state. Unfortunately, UPDATE
queries are commonly surjective such that their inverses
are ambiguous, which means that it is often impossible to
derive D∗i . In contrast, the incremental version of QFix
can bypass this problem by encoding subsequent queries
in the log in a MILP representation.

• Structurally Different WHERE Clause Results: The
basic classifier approach simply learns a set of rules to
minimize classification error, and can derive a clause
whose struture is arbitrarily different from the original
query’s WHERE clause. Although it may be possible to
incorporate a distance measure as part of the decision
tree splitting criteria, it is likely to be a heuristic with
no guarantees.

• High Selectivity, Low Precision: Classifiers try to
avoid overfitting by balancing the complexity of the rules
with classification accuracy. This is problematic for highly
selective queries (e.g., primary key updates), because the
classifier may simply ignore the single incorrect record
and generate a rule such as FALSE. In fact, this form of
severely imbalanced data continues to be a challenge for
most major classification algorithms [36,48]. Thus, we be-
lieve that alternative classification algorithms would not
improve on these results. Compound with the fact that
many workloads are primarily composed of key update
queries [31] this issue severely limits the applicability of
learning-based approaches.

B. REPAIRING THE CORRECT QUERY
Our experiments in Section 6 measure the accuracy of QFix

based on the effect of the repairs to the dataset. However,
it is possible to correctly resolve the reported complaints by
modifying a query that was not corrupted. Here we augment
our evaluation to study how often QFix chooses the right
query to repair. For each setting, we compute the correct
repair ratio pcorrect over 20 runs: pcorrect is the portion of
runs where QFix chose the correct query to repair.

In Figure 11a, we evaluate SingleQueryFix with three
types of workloads (UPDATE, INSERT, and DELETE) over in-
creasing corruption age: corruption age 1 means that the
most recent query was corrupted, while corruption age 250
means that the corruption occurred 250 queries in the past.
In this experiment, we assume complete knowledge of the
complaint set. QFix selects the correct query to repair in
all cases. We next focus on the UPDATE workload and three
ages of corruption, while increasing the database size. Again,
QFix is accurate in every case (Figure 11b).

Finally, we study the effect of incomplete complaints in
Figure 11c. Increasing the false negative rate means that
more complaints are not reported. Similar to the precision
and recall performance in Figure 8b, pcorrect also drops for
problems with old corruptions and high false negative rates.
This is expected since with insufficient information, there is
a larger number of queries that offer valid fixes and QFix
simply chooses the one with the lowest objective.
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(a) Correct repair ratio vs. query types (b) Correct repair ratio vs. database sizes (c) Top-k vs. query types.

Figure 11: QFix maintains 1.0 correct repair ratio with complete complaint set.

Figure 12: Increasing query selectivity leads to longer QFix
execution time.

C. QUERY INTERACTIONS
One of the challenges that motivates our work on QFix

is that the progression of queries in the log obscures and
propagates errors, as subsequent queries interact with tuples
affected by a prior erroneous query. Our synthetic data
generator (Section 6.1) does not directly control the degree
of interaction among queries in the log, but parameters such
as the number of attributes and the dataset size impact this
directly. Here we compute the probability that any two tuples
in the log interact, through the random generation process.
We assume two UPDATE queries, qi and qj , with range WHERE

predicates. The probability that qi and qj interact (i.e., the
intersection of the tuples they update is non-empty) is:

Pr(qi ∩ qj 6= ∅) =

Pr(σqi .A = σqj .A)Pr(qi ∩ qj 6= ∅|σqi .A = σqj .A)

+ Pr(σqi .A 6= σqj .A)Pr(qi ∩ qj 6= ∅|σqi .A 6= σqj .A),

Here, Pr(σqi .A = σqj .A) is the probability that the WHERE

clauses of the two queries have predicates on the same at-

tribute; Pr(σqi .A = σqj .A) = 1
Na

, where Na is the number of
attributes in the database. The probability that the WHERE

clause ranges of the two queries intersect is Pr(qi ∩ qj 6=
∅|σqi .A = σqj .A) = 2 ∗ s, where s is the predicate selectivity.

Similarly for the second term, Pr(σqi .A 6= σqj .A) = Na−1
Na

is the probability that the WHERE clauses of qi and qj use
different attributes. Assuming tuple values are evenly dis-
tributed, the number of tuples selected by each query is
roughly n = Nd · s, where Nd is the number of tuples in
the database. Thus, the probability that these two queries
update at least one common tuple is Pr(qi ∩ qj 6= ∅|σqi .A 6=
σqj .A) = 1 − C(Nd−n,n)

C(Nd,n)
, where C computes the combina-

tions C(n, r) = n!
r!(n−r)!

. Therefore, the probability that two

queries in our dataset interact is:

Pr(qi∩qj 6= ∅) =
2s

Na
+
Na − 1

Na
·(1− C(Nd − n, n)

C(Nd, n)
), (8)

Where n = Nd · s. Based on this result, the probability that
any two queries interact with each other with the default
parameter settings of our generator is about 0.31.

In Section 6.3.2, we study the influence of the number of
attributes Na on QFix performance (Figure 7a) and observe
that more attributes result in faster execution time with all
optimizations. This is expected as Pr(qi∩qj 6= ∅) is inversely
proportional to the number of attributes, which means that
there are fewer interactions. Therefore, fewer interactions
lead to faster runtimes.

We also evaluate QFix over different query selectivities.
In Figure 12, we observe that the execution time of QFix
increases with higher query selectivity, which results in higher
query interaction.
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